STAR TPC Calibrations Review February 2021

Gene Van Buren Brookhaven National Lab

TPC Distortions

Possible Field Distortions

Surfaces

- Field cage rings at wrong potentials (shifted cages, electrical shorts, current leakage out of cages)
- Wrong potentials between inner and outer sector gating grids
- Gating grid wires at wrong potential
- Gating grid displacements in drift direction
- Central membrane displaced in drift direction

Volume

- Misaligned primary E and B fields
- Non-uniformities in B field
- Space charge ion build-up
- Ion backflow, through or around the gating grid ("GridLeak")

Field Distortion Effects I

- Treatable as perturbations on top of standard
 TPC E field
 - Each distortion a separate perturbation
 - B field non-uniformities result in straightforward calculations
- In some cases, perturbing electric fields at all points are straightforward functions
- For others, boundary potentials and any charge density is expressed on a (2D or 3D) grid, and an iterative relaxation is performed to satisfy Poisson's equation at all points on the grid
 - Perturbing electric fields derived at all points on the grid
 - Real data points not on grid, interpolated (1st or 2nd order) between nearby grid points

Straightforward example: misaligned E and B fields

$$-
abla^2 arphi = rac{
ho}{arepsilon}$$

$$\mathbf{E} = -\nabla \varphi$$

Not straightforward example: space charge

Field Distortion Effects II

- Perturbing E fields in drift direction (E_z) are a modification of the primary drift E field
 - Operating near the maximum of the drift velocity vs. E curve means that there is little impact on d.v. from this (<0.1%)
 - TPC-averaged drift velocity is anyhow measured
 - Ignoring E_z errors impacts calculations of perturbing E field maps, may be incorrect at levels of a few % at highest luminosities, where physics requirements for correction accuracy are not stringent
 - This is the consequence for separating each distortion!
- Displacement of drifting electrons determined by integrating Lorentz force over drift time (distance): $\vec{F} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$
 - Use Langevin Equation, includes a friction term that allows a formulation of characteristic ωτ (see backups)
 - Iterative calculation to "undo" distortion (measured position wasn't the original position)

Example: SpaceCharge

- Using our "event shape" model of charge
- Relaxation done on 5 cm x 5 cm 2D (r-z)
 grid (assume Φ symmetry)
 - For other distortions, grid granularity is more fine where rapid changes (discontinuities) are expected
- Radial perturbing E field (E_r , ignore E_z)
- Both radial and azimuthal (r-Φ) distortions
 - Helps to connect with Lorentz equation via:
 - Er leads directly to radial distortion via E term

 - These two components cycle between each other at cyclotron frequency

Calibrating distortions

- Low sensitivity to radial distortions because tracks are radial
 - Difficult to measure, but also less important to measure well
- Typically each distortion has unique characteristics that make measuring it distinct
 - Some overlaps (such as GridLeak and incorrect potentials between inner and outer sector gating grids), but dependencies are different (luminosity and drift distance dependences vs. static and drift independent)
- Some distortions have no free parameters
 - This was leveraged to measure ωτ components in 2006 by intentionally altering gating grid and field cage potentials
- SpaceCharge & GridLeak are the only distortions dependent on beam conditions, requiring re-calibration with every acquired dataset (in principle, should be the only distortions to worry about calibrating for BES-II) [performed by helpers]

GridLeak wall

GridLeak wall

- Attached to new iTPC sectors
- Wall has plating to express three potentials: ground near inner anodes, gating grid voltage near tip, charge-attracting voltage on outside (last two are tunable)
- Garfield simulations used to determine optimal voltages to minimize GridLeak, at the cost of a static distortion (with no free parameters to calibrate)

Known shortcomings

- Inner field cage sees current drawn out likely due to space charge in air
- Don't measure the SpaceCharge radial charge distribution every year
- Drifting SC & GL ions push outward radially as they drift toward central membrane
- GridLeak seen to vary by sector
- Notes about current situation:
 - BES-II: low luminosity, so SpaceCharge & GridLeak are small
 - iTPC: GridLeak even further reduced by charge-collecting wall
 - GMT: would clarify if the SpaceCharge shape is wrong

Unknown shortcomings

- AbortGapCleaning space charge distributions unmeasured
- SpaceCharge saw unexplained fill-by-fill variances in Run 17
- SpaceCharge east/west asymmetries don't match HIJING expectations
- SpaceCharge offsets at projection to zero luminosity
- Extrapolation of GridLeak residuals-gap metric to end-plane doesn't match the model
- Notes about current situation:
 - BES-II & iTPC: see previous slide (SC &GL are small)
 - Zero luminosity offsets most likely due to misalignment
 - This is the only shortcoming of concern for BES-II!

Documentation

- Documentation is linked from the TPC Calibrations web page
- SpaceCharge & GridLeak
 calibration is particularly pertinent
 because it is frequently exercised
 - "How-to" instructions are there
 - Likely need a re-fresh to capture current knowledge
 - Almost all dataset calibration results are listed
 - Holes that can be filled in should be

Final calibration values for the early runs:

SC = 3.952e-8((zdce+zdcw) - 1.286e+4) with GL = 8.11 Final calibration values for the late runs:

SC = 4.702e-8((zdce+zdcw) - 4.355e+4) with GL = 8.19

Conclusions

- Many years of successful STAR physics analyses implies reasonable handling of distortion corrections
 - Particularly so at low luminosities, where we are for BES-II
- Areas of current attention:
 - SpaceCharge degeneracy with alignment
 - New GridLeak wall static correction
 - Operations of Booster Main Magnet

Backups

Potential locations of charge buildup

SpaceCharge: model of charge

- Use radial distribution of electrons arriving at end plane as a proxy for the distribution of primary ions
 - Zerobias, correct for dead channels, gains, distortions
- Examined a few times between 2002-2012
- Very minor luminosity dependence to shape
- Azimuthal dependencies seen in some early years, gone by 2012

Field Distortion Magnitudes

$$B_{\phi}/B_{z} \sim 10^{-6}$$
 $B_{r}/B_{z} \sim 10^{-2}$
 $E_{\phi}/E_{z} \sim 10^{-3}$
 $E_{r}/E_{z} \sim 10^{-1}$
 $\delta(E_{z})/E_{z0} \sim 3 \times 10^{-2}$
 $\delta(B_{z})/B_{z0} \sim 3 \times 10^{-3}$

Distortion equations

(see Blum & Rolandi)

Solve:

$$m\frac{d\overline{u}}{dt} = e\overline{E} + e\left[\overline{u} \times \overline{B}\right] - K\overline{u}$$

substituting:

Langevin Equation with "Friction"

$$\tau = \frac{m}{K}$$
, $\omega = \frac{e}{m} |\overline{B}|$, $\mu = \frac{e}{m}\tau$, and $\hat{E} = \frac{\overline{E}}{|\overline{E}|}$

$$\begin{array}{ll} \text{subject to the} \\ \text{steady state} \\ \text{condition} \end{array} \frac{d\overline{u}}{dt} = 0 \\ \text{yields} \\ \end{array}$$

$$\bar{u} = \frac{\mu |\bar{E}|}{(1+\omega^2\tau^2)} \left(\hat{E} + \omega\tau \left[\hat{E} \times \hat{B} \right] + \omega^2\tau^2 \left(\hat{E} \cdot \hat{B} \right) \hat{B} \right)$$

If you have a well defined model, and good data, then the distortion can be removed with great precision

Distortion equations

Solve:

substituting:

$$\tau = \frac{m}{K} ,$$

$$\bar{u} = \frac{1}{(1 - 1)^n}$$

 \overline{E}

 $-\hat{B}\hat{B}$

If you have a well defined model, and good data, then the distortion can be removed with great precision SpaceCharge effect on sDCA

- All tracks go the same direction (pos. or neg.)
- Track charge independence
- Field dependence

sDCA = signed distance of closest approach

SpaceCharge effect on sDCA

TPC GridLeak distortion

Dependence on field, track charge, location, luminosity consistent with ion leakage at gating grid gap

TPC GridLeak distortion

TPC GridLeak distortion

GridLeak Field Effects

S 500-

- Modeled sheets of charge
 - Relaxation done on custom 3D grid (plots assume) Φ symmetry, but leak is 12-fold symmetry from grid shape)
- GridLeak scales as SpaceCharge!

Applied GridLeak Correction

Not perfect, but as good as design spec!

Distortions scale significantly reduced!

First steps to corrections

- Observables (sDCA) can tell you the distortion quantity (ions in the TPC due to SpaceCharge buildup + GridLeakage)
- Easy with "ideal" tracks
 - Little or no dependencies on reconstruction itself
 - Observable maps easily to distortion quantity
 - sDCA = C * f(Z) * (SpaceCharge + GridLeak)
 - Generally need many events for stats
 - Could be many <u>runs</u> for pp collisions!

First steps to corrections

- Observables (sDCA)
 in the TPC due to Sp
- Easy with "ideal" tra
 - Little or no depende
 - Observable maps ea
 - sDCA = C * f(Z) * (S)
 - Generally need mar
 - Could be many <u>run</u>

Ionization: Scalers

STAR records scaler rates on Zero Degree Calorimeters (ZDCs) and Beam-Beam Counters (BBCs)

Performance Measures: π-/π+

- TPC-measure of the ratio essentially flat all the way to $p_T=12$ GeV/c!
- Central triggers
 (taken at high
 luminosity) just about to
 as good!

SpaceCharge: <sDCA>

- Linear dependence
- sDCA changes sign with B field
- Saw <sDCA> of over 1cm in 2004 and 2005!

in collision rate conditions of:

2004: 200 GeV AuAu at ~10kHz

2005: 200 GeV CuCu at ~30kHz

TPC Sector Detail

- Gating Grid
 - Ground Plane of Wires
 - Anodes
 - No field shaping wires
 - Simple and reliable
 - Individually terminated anode wires limit cross-talk
 - Low gain

Pad Plane

Outer and Inner Sectors of the Pad Plane

sDCA ⇒ SpaceCharge

- Using sDCA of high quality tracks, we can obtain a measurable SpaceCharge for individual tracks.
- Single events generally not enough stats

